Techniques for Feature Extraction from EMG Signal

نویسندگان

  • Sachin Sharma
  • Gaurav Kumar
  • Sandeep Kumar
  • Debasis Mohapatra
چکیده

The myoelectric signal (MES) is one of the biosignals utilized in helping humans to control equipments. For this we required to recognize the hand movement. In this direction the first step is feature extraction. The optimal feature is important for the achievement in EMG analysis and control. By this extracted feature we reduce the computational cost of a multifunction myoelectric control system. The goal of this paper is to define the methods and approaches which are most suited for extracting the features from EMG signal. The techniques discussed here are spectral approaches like STFT, Thompson transform etc, wavelet based analysis, fuzzy based feature extracter and temporal approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Analysis of Wavelet-based Feature Extraction for Intramuscular EMG Signal Decomposition

Background: Electromyographic (EMG) signal decomposition is the process by which an EMG signal is decomposed into its constituent motor unit potential trains (MUPTs). A major step in EMG decomposition is feature extraction in which each detected motor unit potential (MUP) is represented by a feature vector. As with any other pattern recognition system, feature extraction has a significant impac...

متن کامل

Generating the Visual Biofeedback Signals Applicable to Reduction of Wrist Spasticity: A Pilot Study on Stroke Patients

Introduction: Application of biofeedback techniques in rehabilitation has turned into an exciting research area during the recent decade. Providing an appropriate visual or auditory biofeedback signal is the most critical requirement of a biofeedback technique. In this regard, changes in Surface Electromyography (SEMG) signals during wrist movement can be used to generate an indictable visual b...

متن کامل

EMG-based Fatigue Assessment During Endurance Testing With Different VT Protocols

BACKGROUND: Muscle fatigue can be defined as the failure of a muscle to maintain a reasonably expected force output. The multivariate approach to fatigue assessment is used because the multiple (EMG) feature provides more information than anyone. OBJECTIVE: This study presents a method of assessing muscle fatigue during endurance testing at 50% maximal voluntary contraction (MVC) using electro...

متن کامل

Detecting and Predicting Muscle Fatigue during Typing By SEMG Signal Processing and Artificial Neural Networks

Introduction: Repetitive strain injuries are one of the most prevalent problems in occupational diseases. Repetition, vibration and bad postures of the extremities are physical risk factors related to work that can cause chronic musculoskeletal disorders. Repetitive work on a computer with low level contraction requires the posture to be maintained for a long time, which can cause muscle fatigu...

متن کامل

Application of Wavelet Analysis in EMG Feature Extraction

Nowadays, analysis of electromyography (EMG) signal using wavelet transform is one of the most powerful signal processing tools. It is widely used in the EMG recognition system. In this study, we have investigated usefulness of extraction of the EMG features from multiple-level wavelet decomposition of the EMG signal. Different levels of various mother wavelets were used to obtain the useful re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012